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A model problem is analysed to study the microscopic flow near the surface of porous 
media. In  the idealized system, we consider two-dimensional media consisting of 
infinite and semi-infinite periodic lattices of cylindrical inclusions. In  Part 1, results 
for axial flow were presented. In  this work results for transverse flow are presented 
and discussed in the context of macroscopic approaches such as slip coefficients and 
Brinkman's equation. 

1. Introduction 
In  the first part of this paper, (Larson & Higdon 1986, hereinafter referred to as 

LH), we reviewed previous studies of flow near the boundaries of porous media 
concentrating on the slip condition of Beavers & Joseph (1967) and the model 
equation proposed by Brinkman (1947). This earlier work described the microscopic 
velocity field in axial flow through model two-dimensional porous media. From these 
results, we concluded that neither of the macroscopic approaches provided a 
satisfactory description for the boundary flow in porous media. The reader is referred 
to LH for a more complete discussion of these results. In the present effort, our goal 
is to extend these calculations to the more realistic problem of transverse flow through 
two-dimensional media. The solid geometry is identical, but the orientation of the 
flow has changed. Thus, the two sets of calculations provide a complete description 
for an arbitrary flow through these idealized two-dimensional media. 

2. Mathematical formulation 
We study two-dimensional Stokes flow through periodic lattices of solid inclusions. 

Two classes of flow are considered. The first, pressure-driven flow through doubly 
periodic lattices represents interior flow through the model media. These calculations 
investigate the effect of geometry on the permeability. The second class, simple shear 
flow over semi-infinite lattices represents flow over the surface of a bounded porous 
medium (see figure 1). 

The governing equations are the Stokes equations for low-Reynolds-number flow 

-Vp+pV%4 = 0, (1) 

together with the continuity equation V - u  = 0. 
For an arbitrary domain, we solve these equations using the boundary-integral 
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FIGURE 1.  Model geometry for transverse flow over the surface of a bounded porous medium. 

method described by Higdon (1985). Briefly the partial differential equations lead 
to the integral formula 

where u andfare the fluid velocity and surface stress at points on the boundary of 
the domain. All symbols are as defined by Higdon (1985, equation 12) except that 
n points into the fluid, correcting an earlier error. The imposition of boundary 
conditions on u orfleads to a Fredholm integral equation for the unknown quantities. 
The numerical solution of these equations including error analysis and accuracy tests 
is discussed by Higdon. 

When the boundary consists of a single continuous surface, the integral equation 
based on (2) provides a unique solution for the velocity, but allows an additive 
constant for the normal stress, i.e. the reference pressure may be prescribed 
arbitrarily. For a boundary consisting of several surfaces, e.g. interior inclusions, an 
arbitrary constant for the normal stress may be specified independently on each 
surface. The indeterminacy is resolved by employing the integral formula for pressure 
analogous to (2) 

see Happel & Brenner (1973 $3-4). 
With this additional equation, the pressure is determined on all surfaces to within 

a single constant, the reference pressure for the system. It should be noted that (3) 
is unnecessary if, as in the present case, we merely wish to solve (2) for the velocity 
in terms of a specified external pressure gradient. 

Returning to the problem of flow through periodic lattices, we divide our domain 
into unit cells and solve (2) as an interior flow problem in each cell. The implementation 
of boundary conditions and continuity conditions across cell boundaries is discussed 
below for the two separate classes of problems. 

2.1. Boundary conditions for in$nite arrays 
Consider a square lattice of circular cylinders, the simplest case among infinite arrays. 
The unit cell and coordinate system is shown in figure 2 ( a )  ; the pressure gradient 
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FIGURE 2. (a) Unit cell for an inkite square lattice of circular cylinders. Dashed lines represent 
symmetry planes. ( b )  Unit cell for a general lattice with arbitrary inclusions. 

G is taken in the +z-direction, the cell width is Lo. Let u = (u,, u,) andf= ( f , ,  f , )  
be the fluid velocity and surface stress respectively. For this geometry, the combi- 
nation of symmetry and periodicity leads to particularly simple boundary conditions. 
First, on the surface of the inclusion S, we have I( = 0. On the top and bottom 
boundaries, the vertical velocity and shear stress are zero, hence up = 0, f ,  = 0 on 
S, and S,. On the front and back boundaries, the vertical velocity is zero, and in 
addition, the pressure is constant on each surface. This last condition is not 
immediately obvious, but follows from the Stokes equations together with the 
symmetries of u,. Takingp = 0 at the centre of the cell, we have boundary conditions 
u, = 0 and f i  = - p L 0  on S, and S,. Note that f, is - p  on boundary S,, but + p  on 
boundary S, owing to the change in the sense of the normal vector, i.e. A points into 
the cell on all boundaries. 

The simple form of the boundary conditions given above applies for arbitrary 
inclusion shapes symmetric about both the z- and y-axes in a rectangular lattice. A 
more general lattice is shown in figure 2 ( b ) .  The solid boundary surface is labelled 
S, while the fluid cell boundary is split into two halves labelled S, and S,. Segments 
along S, are related to segments along S, by translations corresponding to basis 
vectors of the lattice. It might appear that the dashed parallelogram in figure 2 would 
provide a simpler unit cell; however, the all-fluid cell boundary will prove more 
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convenient when we consider semi-infinite arrays. The no-slip condition is again 
u = 0 on S. The periodicity conditions on the cell boundaries are now written 

“Sl = [ulsz, (4) 

( 5 )  If- ( G - 4  4 S l  = [-f- ( G - 4  nlsz, 
where G is the mean pressure gradient through the lattice and may be in an arbitrary 
direction. The boundary condition ( 5 )  simply requires that the shear stress be periodic 
and that the difference in the normal stress be proportional to the pressure gradient. 

2.2. Boundary conditions for serni-injnite arrays 

We consider a simple shear flow uw = (yy, 0) over a semi-infinite lattice of inclusions. 
The flow is periodic in the x-direction, but extends from - 00 to 00 in the y-direction. 
As shown in figure 3 (a) for a simple square lattice, the domain covers a large number 
of cells above and below the interface. We proceed in a manner analogous to that 
used for axial flow in LH. The periodic conditions at  the sides of the cell are expressed 

[ulss = [uls,, ms, = -ms,, (6) 

Wli, = [UIi:’, mi1 = -LfIi;l. (7 1 

and the continuity of force and velocity at the bottom and top of each cell give 

The superscript indicates the cell number, where the cells are numbered consecutively 
from bottom to top. 

At the top of the uppermost cell and bottom of the lowermost cell, the infinity 
conditions apply 

my-+m = @P,O), [Ul,--, = (070). (8) 
The no-slip condition on the solid inclusions is the same as for the infinite lattices, 

u = 0 on S. 
The simultaneous solution for the flow field in all cells would be computationally 

expensive. To avoid this expense, we follow LH in employing an iterative solution. 
Let the cell containing the top row of inclusions be labelled zero. In  the first iferation, 
we apply the infinity conditions at the boundaries of this cell, that is 

m$, = (/l.P,O), [4$2 = 0. (9) 
With these specifications, we calculate first approximations for u on the top and 

forfon the bottom of this cell. These values are used as boundary conditions on the 
surfaces of adjoining cells. For the first pure fluid cell, we have 

mi, = @?i ,O) ,  [UIB, = [u10,,7 (10) 

m,: = -mi*, [u]& = 0. (11) 

while for the lower cell with the inclusion 

In each of these cells, the new values for u at the top andfat the bottom are passed 
in turn to the next cells, and the process continues until the upper and lowermost 
cell are reached. 

In  summary, in each pure fluid cell, the boundary conditions are 

mi, = @?,O)  [Uli, = [4ii1, (12) 

mi1 = -m;j1 [u]i2 = 0. (13) 

while in each solid cell 
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FIGURE 3. (a) Unit cells for semi-infinite square lattice of circular cylinders. (a) Unit cell for a 
general semi-infinite lattice. 

A t  the start of the second iteration, we return to the zeroth cell. Instead of the 
infinity values, we employ the calculated values from adjoining cells in the previous 
iteration 

IYl& = - vlk,.,, culO,z = [~ls:O1&. (14) 

This process is repeated for all cells, and the iterations continue until convergence 
is achieved. In  practice, we find the corrections at each iteration overcompensate, 
and we employ a weighted average of the old estimate and the new approximation. 
With this relaxation procedure, the iterations converged rapidly in all cases. 

The extension of this procedure for more general lattices is straightforward. Figure 
3(6) shows a typical unit cell with different sections of the perimeter labelled AS, to 
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8,. The periodicity boundary conditions are exactly as stated in (6). The matching 
conditions between adjoining cells and the steps in the iteration are also the same, 
the only differences being that S,  and S, are slightly more general boundaries. 

The method outlined above may be used to compute accurate solutions for shear 
flow over semi-infinite lattices; however, one additional modification is introduced. 
In the cells above the medium, we define disturbance quantities uD = u-um and 
f =f-f" and modify the boundary conditions to solve for uD andfD instead of the 
total quantities. This leads to a slight improvement in numerical accuracy as 
discussed by Higdon (1985). It should be noted that the computational cost for the 
interative solution of the semi-infinite lattices is comparable to the simple solution 
of a single cell. This feature is a consequence of the boundary-integral method as 
discussed in LH. 

3. Transverse flow through infinite arrays 
Having developed a method for solving the Stokes equations in complicated 

periodic domains, we first apply this technique to study the interior flow problem 
for model porous media. Our goal is to determine the changes in the permeability 
as a function of the geometrical parameters, but also to examine changes in the 
detailed flow field. This microscopic flow field is important for convective transport 
applications, and for filtration studies where individual particle trajectories are 
studied. 

Streamlines for pressure-driven flow through a simple square lattice of circular 
cylinders are shown in figure 4. In  the first example, figure 4(a), volume fraction 
c = 0.10, the streamlines form a smooth pattern with nearly equal velocity over a 
wide band. It is only near the cylinders and directly between them that the velocity 
is noticeably diminished (as shown by the spreading of the equal flux streamlines). 
At higher concentrations, c = 0.40 in figure 4 (b), the pattern is dramatically different. 
The variation in velocity is now much larger with strong acceleration as the fluid 
squeezes through the narrow gap. In the streamwise direction, a region of separated 
flow has formed in the gap between cylinders. The weak eddy pattern is similar to 
that which has been observed for flow past an isolated pair of cylinders. It should 
be emphasized that the velocity in these regions is extremely small ; the streamlines 
in these regions are drawn for clarity and are not spaced with the same flux as the 
main flow field. The existence of separated flow regions in a porous medium is 
significant, because it implies that the effective wetted surface for convective 
transport processes is less than the total wetted surface. In  other applications, such 
as hydrodynamic chromatography, fine particles may migrate into the stagnant 
regions, leading to extremely long residence times. 

Although stagnant fluid regions are important and certainly exist in real porous 
media, their appearance in idealized systems such as figure 4 (b) must be interpreted 
with some caution. This point is clearly demonstrated in figure 4(c) which shows the 
identical medium with the direction of the pressure gradient shifted :" from the x-axis. 
Even this minute change is sufficient to eliminate the separated region. Note that 
the dividing streamline is no longer symmetric and would have to be traced through 
a large number of cells before it reattaches to a solid boundary. Figure 4 ( d )  shows 
the same medium with the pressure gradient oriented at  an angle of45" with respect 
to the x-axis. Here the flow pattern is much smoother with nearly equal velocity 
throughout the medium. In reviewing figures 4(b-d), we again note that the media 
are the same, and are in fact isotropic. Thus the permeability is identical in all three 
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FIQURE 4. Streamlines for pressure-driven flow through infinite square lattice of circular cylinders. 
(a) Solid concentration c = 0.10; (b)  c = 0.40; (c) c = 0.40, pressure gradient directed f from 
horizontal; (d) c = 0.40, pressure gradient direct at 45' to horizontal. 

cases. This illustrates the fact that microscopic flow patterns may show great 
variation even in media which appear identical from a macroscopic point of view. 

To see the effect of a different microscopic geometry, an example of a hexagonal 
lattice of circular cylinders is shown in figure 5. At the low concentration, figure 5 (a) ,  
concentration c = 0.4 the streamlines are evenly distributed showing equal velocity. 
At higher concentration, c = 0.70 figure 5 ( b ) ,  the effect is similar to that for high 
concentration square arrays; that is, the main flow is confined to the clear channels 
with separated eddies between cylinders. 

A quite different type of flow is shown in figure 6 for a square lattice of elliptical 
inclusions of high aspect ratio. This medium is highly anisotropic and leads to a highly 
skewed velocity field. The pressure gradient is horizontal, parallel to the z-axis, but 
the average fluid velocity is nearly parallel to the elliptical axes owing to the 
differences in the components of the permeability tensor. 

In  the streamline patterns above, we have presented a microscopic description of 
the porous media. For a macroscopic description, the most important property of the 
medium is its permeability tensor. For a general medium, it is most convenient to 
discuss this quantity in terms of the principal permeabilities, referred to the principal 
axes. The principal permeability relative to axial flow has been calculated previously 

5-2 
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FIGURE 5. Streamlines for pressure-driven flow through infinite hexagonal lattices of circular 
cylinders. (a) c = 0.40; ( b )  c = 0.70. 

in LH. For media isotropic in the transverse plane of flow, such as square or hexagonal 
arrays of circular cylinders, the remaining permeabilities are equal and shall be 
identified as k, in the following discussion. For anisotropic media such as illustrated 
in figure 6, the principal permeabilities will be identified as k, and k,. 

The permeability k, for square and hexagonal lattices of circular cylinders is shown 
in figure 7 as a function of concentration. This quantity has been calculated 
previously by Sangani & Acrivos (1982) using a different method. The two sets of 
calculations are in excellent agreement, providing a useful check on the accuracy. 
Note that the hexagonal lattice has a higher permeability but that the two values 
are nearly identical for small concentrations. 

To investigate the effect of microscale geometry on the permeability, we examine 
the family of lattices studied for axial flow in LH. Specifically, consider a lattice of 
cylinder centres with base vectors (Lo, 0) and (H,  cos 8, H,).  A unit cell in this lattice 
is a parallelogram with base Lo, height H ,  and interior angle 8. Centred on the vertices 
of the parallelogram are elliptical cylinders of aspect ratio a/b with major axis tilted 
at an angle g5 with respect to the x-axis. The lattices thus constructed are 
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FIQURE 6. Streamlines for flow through a square lattices of elliptical cylinders. Pressure gradient 
is horizontal, but flow is inclined owing to strong anisotropy in the permeability tensor. 
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FIGURE I. Permeability aa a function of concentration for square and hexagonal lattices of circular 
cylinders. Permeability k normalized with respect to area of unit cell A. 

C 

characterized by the five parameters (Ho/Lo,  O,a/b,  9, c ) .  In the following, we 
calculate the permeabilities for the same types of media analysed by LH for axial 
flow. 

The effect of lattice angle 0 on the permeability is shown in figure 8 for circular 
cylinders at three different concentrations. The lower permeability k, is little affected 
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FIQURE 8. Principal permeabilities k, and k, of staggered lattices aa a function of lattice inclination 
angle 8, normalized with respect to k,, permeability of unstaggered lattice. Results shown for three 
concentrations, c = 0.05, 0.3 and 0.7. 

e 

by lattice angle, because the horizontal spacing between cylinders is unchanged. For 
the smaller concentrations, c = 0.05 and c = 0.3, the spacing between cylinders is only 
slightly affected, and the permeabilities k, are nearly equal to their respective values 
for the unstaggered array. For the largest concentration, c = 0.70, however, the 
stagger in the array significantly increases the gap spacing between cylinders leading 
to a large increase in permeability as 0 departs from 90’. 

The next parameter to be considered is the aspect ratio of the inclusions a/b.  The 
permeability for a variety of lattice configurations is shown in figure 9. For all 
configurations, the lower permeability k, approaches zero with increasing aspect 
ratio. This result is obvious, in that the geometry is approaching a system of flat plates 
perpendicular to the flow direction. For most of the lattices considered (curves b-j) 
the larger permeability k, is only slightly affected by aspect ratio. This is explained 
by the fact that the slight increase in channel ‘width’ is offset by the increased 
percentage of solid surfaces on the ‘sides’ of the clear channel. The lone exception 
to this rule is lattice (a) which is a square lattice at concentration c = 0.30. For this 
case, the spacing between the inclusions is significantly increased, and the resulting 
channel ‘width’ leads to a sharp increase in permeability. 

The importance of the inclusion tilt angle 4 is examined in figure 10, where the 
permeability is plotted for three lattices with elliptical inclusions of aspect ratio 
a/b  = 2. For 4 = 0, the lattices are very anisotropic with greater flow resistance in 
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FIQURE 9. Principal permeabilities k, and k, as a function of aspect ratio a/b for elliptical inclusions 
in various lattice geometries, normalized with respect to value for circular cylinders. 

Square lattice, q5 = 0" 
Square lattice, q5 = 46" 
Hexagonal lattice, q5 = 30" 

(a) c = 0.3 
( a )  c = 0.3 
(c) c = 0.3 

(d) c = 0.05 
(e) c = 0.05 
(f) c 70.05 

the direction perpendicular to the major axes. As 4 is increased, the gap spacing 
becomes more uniform in the principal directions and the media become more 
isotropic. 

To summarize our results for interior flows, we have found that the microscopic 
flow field observed in streamline patterns may change dramatically while macroscopic 
measures such as permeability are unchanged. On the other hand, the macro- 
scopic permeability may be affected by the detailed microscale geometry and is not 
characterized by the concentration (or porosity e = 1 - c) alone. 

4. Transverse flow through semi-infinite arrays 
As in LH, our main purpose is to describe the flow near the surface of a porous 

medium. Towards that goal, we consider a simple shear flow over semi-infinite lattices 
of inclusions. The most revealing view of this flow field is presented in the streamline 
patterns in figure 11 for square lattices of circular cylinders. Figure 11 (a)  shows the 
flow field for a low concentration c = 0.03. The streamlines above the top row of 
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FIGURE 10. Principal permeabilities as a function of axis tilt 0 for elliptical cylinders of aspect ratio 
2: 1, normalized with respect to value of k, at q5 = 0'. (a) Square lattice, c = 0.3; (a) Square lattice, 
c = 0.05; (c) Hexagonal lattice, c = 0.3. 

FIGURE 11 (a). For caption see facing page. 
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FIGURE 11.  Streamlines for simple shear flow over semi-infinite lattice of circular cylinders. Figure 
shows top two rows of lattice. Streamlines are plotted for equal volume flow rate except at separating 
streamlines where streamline spacing jumps to new value to show greater detail in slower moving 
regions. (a) c = 0.03, (a) c = 0.042, (c) c = 0.10. 

inclusions are smooth with a spacing characteristic of a slightly perturbed shear flow. 
In the next cell, below the top row of cylinders, the streamlines appear as one might 
expect, with a rapidly diminishing velocity nearly parallel to the imposed shear flow. 
It is in the next level that the flow changes dramatically with the appearance of a 
row of recirculating eddies. One layer further down (not shown here) the flow is driven 
in the reverse direction by the action of these eddies. Although this pattern is 
interesting from a mathematical and aesthetic point of view it is of little significance 
in physical applications. The strength of the flow field decays by two orders of 
magnitude over a single lattice cell. Thus, the velocity below the second row of 
cylinders would be negligible in any real system. 
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FIQURE 12. Streamlines for semi-infinite flow over hexagonal lattice of circular cylinders, 
c = 0.10. 

As interesting feature of the surface flow in porous media is the change in the 
velocity field with small changes in the structure of the medium. Figures 11 (b) and 
(c) show the streamlines for square lattices with concentrations c = 0.042 and 
c = 0.10 respectively. Figure 11 (b) shows an unusual meandering flow between the 
first two rows of cylinders as the eddy forces its way into this region. It is also 
interesting to see an oblique stagnation point in the fluid below the second row of 
cylinders. For the higher concentration c = 0.10, figure 11 (c), the recirculating eddies 
appear in the first layer of the medium immediately below the top row of inclusions. 
As before, this drives the fluid in a reversed flow in the next layer down. For a further 
study of the flow sensitivity to geometry, we may examine the streamlines for a 
hexagonal lattice of cylinders c = 0.10 in figure 12. Here the eddy structure and the 
position of the separating streamlines have changed owing to the stagger in the rows 
of cylinders. 

From our inspection of these streamline patterns, we conclude that the flow over 
the surface of a porous medium is inherently a surface phenomenon with an extremely 
rapid decay of velocity even at  low concentrations. The flow in the first layer of the 
medium is not necessarily parallel to the surface but has components normal to the 
surface of comparable magnitude owing to the presence of recirculating eddies and 
regions of separated flow. Any attempt to describe this flow in terms of averaged 
quantities or macroscopic models will miss important details of the flow. 

4.1. Slip velocities in transverse $ow 

Despite the fact that macroscopic models are inadequate for resolving the surface 
flow, there is continued interest in the use of slip coefficients and Brinkman’s 
equation. We follow LH ($4.1) and show how slip velocities may be calculated for 
these flows. Define a nominal interface as the line intersecting the centres of the top 
row of inclusions. The volume flow rates Q+ and &- above and below this line are 
calculated and used to define the slip velocity us as in LH. The calculation of us based 
on Q+ is equivalent to the experimental procedure of Beavers & Joseph (1967). Slip 
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FIGURE 13. Slip velocity as a function of concentration for (a) square lattice, (b) hexagonal lattice 
of circular cylinders. A, is based on flow rate below interface; 0, is based on flow above interface. 
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velocities for square and hexagonal lattices of cylinders as a function of concentration 
are shown in figure 13. These results are broadly consistent with our results for axial 
flow through the same media. Two significant points may be reconfirmed. The first 
is that the two definitions of slip velocity show considerable disparity except at 
extremely small concentrations. The second is that the value of the slip velocity will 
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FIGURE 14. Decay factor &*/p)a as a function of concentration for (a) square lattices ( b )  hexagonal 
lattices of circular cylinders. Decay rate is calculated from the maximum shear stress on successive 
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be extremely sensitive to the definition of the interface as first pointed out by Saffman 
(1971). As an example, moving the interface a single microscopic cell length up or 
down changes u , / j h  by f 1.0, a variation greater than the entire range of values 
shown in figure 13. 

4.2. Decay factors for transverse flow 
Another macroscopic quantity which is often discussed for flow over porous surfaces 
is the decay factor (,u*/,u)i based on the effective viscosity in Brinkman’s equation. 
This is a dimensionless measure of the lengthscale for the decay of the velocity in 
the medium normalized with respect to the permeability. To calculate the decay 
factor, we require an estimate for the characteristic fluid velocity in each cell. This 
is difficult to achieve owing to the unusual streamline patterns and the variation with 
respect to concentration. For axial flow, we employed the volume flux through 
individual cells, however this shows strong oscillations owing to the presence of 
eddies. Thus, we find i t  most convenient to characterize the strength of the flow field 
by the maximum shear stress on the inclusion in each cell. Taking the ratio of this 
quantity from one row to the next yields a relatively smooth measure for the decay 
factor. This quantity is plotted in figure 14 for square and hexagonal lattices of 
circular cylinders. In  each case, (,u*/,u): remains of order 1, but its numerical value 
shows greater variation than for the case of axial flow. This is to be expected given 
the drastic changes which occur in the streamlines for these media. Decay factors for 
more complicated geometries are not presented here. For anisotropic media, the 
simple idea of a decay factor is not meaningful in the context of Brinkman’s equation. 
This point is discussed at some length in LH. 

In summary, we have extended our previous calculations to include the case of 
transverse flow past periodic lattices as models of porous media. We have shown that 
the flow near the surface of a porous material may be of a quite complex nature and 
is sensitive to small changes in the structure of the medium. The surface-driven flow 
in a porous medium decays extremely rapidly even for low solid concentrations. 
Macroscopic models’ are inadequate to capture these detailed flow fields. For 
applications such as convective transport from porous surfaces, the microscopic flow 
field must be employed to calculate correctly non-linear terms such as u*Vc. The use 
of slip coefficients for porous boundaries is not well justified since the slip coefficient 
is extremely sensitive to the definition of the nominal interface. For the solution of 
the exterior flow field, any reasonable choice for the slip coefficient will give 
equivalent results with only a microscopic change in the position of the interface. 

This work was supported by grants from the National Science Foundation and the 
Dow Chemical Company Foundation. 
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